

Surname	Centre Number	Candidate Number
First name(s)		2

GCE AS/A LEVEL

2305U20-1

S24-2305U20-1

FRIDAY, 17 MAY 2024 – AFTERNOON

FURTHER MATHEMATICS – AS unit 2 FURTHER STATISTICS A

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a Formula Booklet;
- a calculator;
- statistical tables (RND/WJEC Publications).

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The maximum mark for this paper is 70.

The number of marks is given in brackets at the end of each question or part-question.

Sufficient working must be shown to demonstrate the **mathematical** method employed.

Answers without working may not gain full credit.

Unless the degree of accuracy is stated in the question, answers should be rounded appropriately.

You are reminded of the necessity for good English and orderly presentation in your answers.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1	14	
2	13	
3	12	
4	12	
5	12	
6	7	
Total	70	

2305U201
01

JUN242305U20101

Examiner
only

Reminder: Sufficient working must be shown to demonstrate the **mathematical** method employed.

1. Dave and Llinos like to go fishing. When they go fishing, on average, Dave catches 4.3 fish per day and Llinos catches 3.8 fish per day. A day of fishing is assumed to be 8 hours.

(a) (i) Calculate the probability that they will catch fewer than 2 fish in total on a randomly selected half-day of fishing. [4]

(ii) Justify any distribution you have used in answering (a)(i). [1]

(b) On a randomly selected day, Dave starts fishing at 7 am. Given that Dave has not caught a fish by 11 am,

- find the expected time he catches his first fish,
- calculate the probability that he will not catch a fish by 3 pm.

[4]

2305U201
03

(c) On average, only 2% of the fish that Llinos catches are trout. Over the course of a year, she catches 950 fish. Calculate the probability that at least 30 of these fish are trout. [3]

Examiner
only

(d) State, with a reason, a distribution, including any parameters, that could approximate the distribution used in part (c). [2]

BLANK PAGE

**PLEASE DO NOT WRITE
ON THIS PAGE**

2305U201
05

05

2. Emlyn aims to produce podcast episodes that are a standard length of time, which he calls the 'target time'. The time, X minutes, above or below the target time, which he calls the 'allowed time', can be modelled by the following cumulative distribution function.

Examiner
only

$$F(x) = \begin{cases} \frac{x+2}{5} & x < -2 \\ \frac{x^2-x+3}{5} & -2 \leq x < 1 \\ 1 & 1 \leq x \leq 2 \\ x > 2 \end{cases}$$

(a) Calculate the upper quartile for the 'allowed time'. [5]

(b) Find $f(x)$, the probability density function, for all values of x . [4]

(c) (i) Calculate the mean 'allowed time'. [3]
(ii) Interpret your answer in context. [1]

Examiner
only

BLANK PAGE

**PLEASE DO NOT WRITE
ON THIS PAGE**

2305U201
09

09

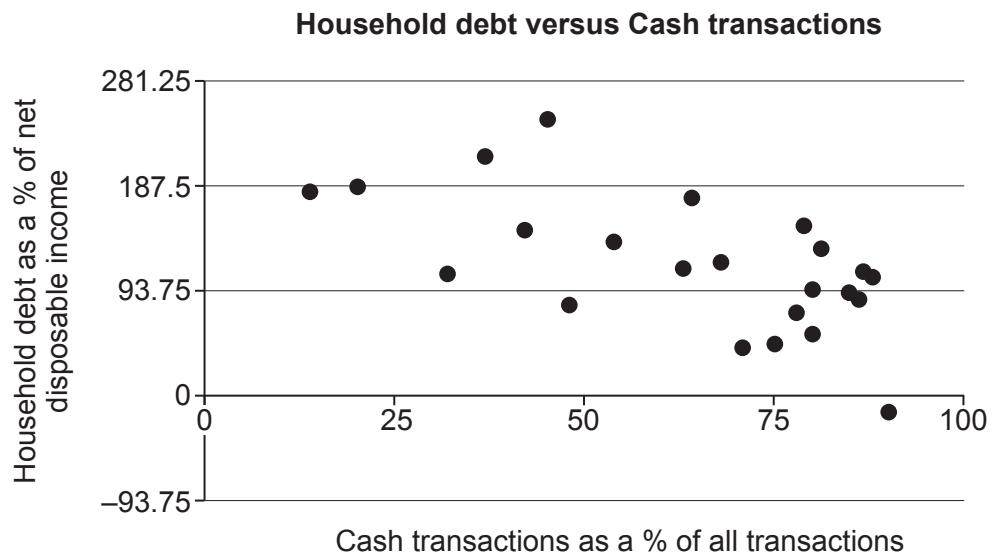
3. A company makes bags. The table below shows the number of bags sold on a random sample of 50 days. A manager believes that the number of bags sold per day can be modelled by the Poisson distribution with mean 2.2.

Number of bags sold	0	1	2	3	4	5 or more
Frequency	7	10	11	9	6	7

(a) Carry out a chi-squared goodness of fit test, using a 10% significance level. [11]

(b) A chi-squared goodness of fit test for the Poisson distribution with mean 2.5 is conducted. This uses the same number of degrees of freedom as part (a) and gives a test statistic of 1.53. State, with a reason, which of these two Poisson models is a better fit for the data. [1]

4. An author poses the following question:


Does using cash for transactions affect people's financial behaviour?

She collects data on 'Cash transactions as a % of all transactions' and 'Household debt as a % of net disposable income' from a random sample of 25 countries. The table below shows the data she collected. There are missing values, p and q , for Malta and Denmark respectively.

Country	Cash transactions as a % of all transactions x	Household debt as a % of net disposable income y	Country	Cash transactions as a % of all transactions x	Household debt as a % of net disposable income y
Malta	92	p	France	68	120
Mexico	90	-14	Luxembourg	64	177
Greece	88	107	Belgium	63	113
Spain	87	110	Finland	54	137
Italy	86	87	Estonia	48	82
Austria	85	91	The Netherlands	45	247
Portugal	81	131	UK	42	147
Slovenia	80	56	Australia	37	214
Germany	80	95	USA	32	109
Ireland	79	154	Sweden	20	187
Slovakia	78	74	South Korea	14	182
Lithuania	75	46	Denmark	q	261
Latvia	71	43			

The summary statistics and scatter diagram below are for the other 23 countries.

$$\sum x = 1467 \quad \sum y = 2695 \quad \sum x^2 = 105073 \quad S_{xx} = 11503.91304 \quad S_{yy} = 78669.30435$$

$$\sum y^2 = 394453 \quad \sum xy = 152999 \quad S_{xy} = -18895.13043$$

(a) Using the summary statistics for the 23 countries, calculate and interpret Pearson's product moment correlation coefficient. [3]

.....

.....

.....

.....

.....

.....

.....

.....

.....

(b) Calculate the equation of the least squares regression line of Household debt as a % of net disposable income (y) on Cash transactions as a % of all transactions (x). [5]

Examiner
only

The regression line x on y is given below.

Examiner
only

$$x = -0.24y + 91.92$$

(c) By selecting the appropriate regression line in each case, estimate the values of p and q in the table.

[2]

(d) Comment on the reliability of your answers in part (c).

[1]

(e) Interpret the negative value of y for Mexico.

[1]

5. Lily is interested in the relationship between the way in which students learned Welsh and their attitude towards the Welsh language.

Students were categorised as having learned Welsh in one of three ways:

- from one Welsh-speaking parent/carer at home,
- from two Welsh-speaking parents/carers at home,
- at school only, for those with no Welsh-speaking parents/carers at home.

The students were asked to rate their attitude towards the Welsh language from 'Very negative' to 'Very positive'.

The following data for a random sample of 253 students were collected as part of a project.

Learned Welsh				
Attitude	From two parents/carers	From one parent/carer	At school only	Total
Very negative	2	14	30	46
Slightly negative	4	20	21	45
Neutral	12	17	8	37
Slightly positive	21	19	11	51
Very positive	25	21	28	74
Total	64	91	98	253

Lily intends to carry out a chi-squared test for independence at the 5% level. She produces the following tables which are incomplete.

Expected Frequencies	Learned Welsh		
	From two parents/carers	From one parent/carer	At school only
Attitude			
Very negative	11.64	16.55	17.82
Slightly negative	11.38	16.19	17.43
Neutral	9.36	13.31	14.33
Slightly positive	12.90	18.34	19.75
Very positive	F	26.62	28.66

Chi-Squared Contributions	Learned Welsh		
Attitude	From two parents/carers	From one parent/carer	At school only
Very negative	7.98	0.39	8.33
Slightly negative	4.79	0.90	0.73
Neutral	0.74	1.02	<i>G</i>
Slightly positive	5.08	0.02	3.88
Very positive	2.11	1.19	0.02
Total	20.70	3.52	<i>H</i>

Examiner
only

(a) Calculate the values of F , G and H .

[4]

(b) Carry out Lily's chi-squared test for independence at the 5% level.

[6]

(c) By referring to the figures in the tables on pages 16 and 17, give two comments on the relationship between the way students learned Welsh and their attitude towards the Welsh language. [2]

Examiner
only

6. Penelope makes 8 cakes per week. Each cake costs £20 to make and sells for £60. She always sells at least 5 cakes per week. Any cakes left at the end of the week are donated to a food bank. The probability that 5 cakes are sold in a week is 0.3. She is twice as likely to sell 6 cakes in a week as she is to sell 7 cakes in a week. The expected profit per week is £206.

Construct a probability distribution for the weekly profit.

[7]

Examiner
only

END OF PAPER

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
23		

BLANK PAGE

**PLEASE DO NOT WRITE
ON THIS PAGE**

